
NASA Technical Memorandum 106702 _

9

p..

Computational Simulation of the Formation
and Material Behavior of Ice: _: :

Michael T. Tong and Surendra N. Singhal

Sverdrup Technology, Inc. _

Lewis Research Center Group

Brook Park, Ohio

Christos C. Chamis

National Aeronautics and Space Administration __

............ Lewis Research Center

Cleveland, Ohio

Prepared for the

1994 Energy Technology Conference and Exhibition,

"Materials, Design and Analysis" Symposium

sponsored by the American_Society of Mechanical Engineers

New Orleans, Louisiana, January 23-26, 1994

@
National Aeronautics and
Space Administration ' .

(NASA-/M-I06702) COMPUTATIONAL

SIMULATION OF THE FORMATION AND

MATERIAL BEHAVIOR OF ICE (NASA.

Lewis Research Center) 14 p

G3/39

N95-16416

Unclas

0033879



: j



COMPUTATIONAL SIMULATION OF THE FORMATION AND MATERIAL BEHAVIOR OF ICE

Michael T. Tong and Surendra N. Singhal

Sverdrup Technology, Inc.
Lewis Research Center Group

Brook Park, Ohio 44142

and

Christos C. Chamis

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

Computational methods are described for simulating the formation and the material behavior of ice

in prevailing transient environments. The methodology developed at the NASA Lewis Research Center
was adopted. A three-dimensionaI finite-element heat transfer analyzer was used to predict the thickness

of ice formed under prevailing environmental conditions. A multifactor interaction model for simulating

the material behavior of time-variant ice layers is presented. The model, used in conjunction with lami-

nated composite mechanics, updates the material properties of an ice block as its thickness increases with

time. A sample case of ice formation in a body of water was used to demonstrate the methodology. The
results showed that the formation and the material behavior of ice can be computationally simulated using

the available composites technology.

INTRODUCTION

Ice forms in nature in various ways and comes in contact with manmade structural systems and

their components. The formation of ice on structures can cause undesirable loading which affects their

performance. In severe environments with constantly changing conditions such as temperature and time,

the properties of ice vary significantly. To effectively counteract damaging ice effects, it is necessary (1)
to understand the mechanism of ice formation, (2) to identify the different variables (factors) and environ-

mental conditions that affect the properties of ice, (3) to characterize the material properties of ice, and (4)

to analyze how the ice properties are affected by the combination of (1) to (3).
Experimental investigations of the material behavior of ice are expensive, test specific, and not

always reliable. For instance, the strength of ice as measured under laboratory conditions can be different

by an order of magnitude from multiyear sea ice (ref. 1). General purpose computational simulation

models are needed for a cost-effective and reliable quantitative assessment of the material behavior of ice.

The NASA Lewis Research Center has been developing computational simulation methods and corre-

sponding computer codes for more than two decades to analyze composite materials and/or structures

(ref. 2). These methods and codes are applicable for evaluating the behavior of ice. The objective of this

report was to demonstrate the capability of these computer codes to predict the thickness of the formation

and the properties of ice in prevailing environments. Chosen for the demonstration was a sample case of

ice formation in a body of water to evaluate (1) the time-variant thickness of ice formed under prevailing

environmental conditions and (2) the mechanical and thermal properties of ice at different temperatures

through the ice thickness.



FUNDAMENTALCONSIDERATIONS

A samplecaseof iceformationinabodyof waterwaschosenfor thepresentstudy.Whenabody
of waterisexposedtosubfreezingtemperaturesatitstopsurface,atemperaturegradientdevelops
throughoutthewaterdepths(fig. 1).Theformationof iceoccursgradually:asthetopwaterlayerreaches
thefreezingtemperature,it becomesice.Thetemperaturegradientiscontinuouslychangingthroughout
thewaterdepth.As thesecondlayerof iceforms,thetemperaturein thefirst layerdecreasesfurther,
causingthematerialpropertiesof thetwolayerstobedifferent.Hence,ablockof iceformedovera
periodof timeconsistsof severallayersof icehavingdifferentmaterialpropertiesandadifferenttem-
peratureprofileforeachlayer.Consequently,themechanismof iceformationgovernsthematerial
properties.Toevaluatethepropertiesof theiceblock,it isconvenienttosimulatetheiceformation
processlayerby layerbecauseeachlayerhasitsownmechanicalandthermalproperties.Well-known
laminatetheoriescanthenbeusedtodeterminethepropertiesof theiceblockfortheindividuallayers
sincetheoveralliceblockcharacteristicsdependontheintegratedmaterialbehaviorof theindividual
layers.Asthetemperaturedecreases,icebecomeslessdense,harder,andstiffer.

Thestructuralbehaviorof icedependsonmanyvariablesincludingload,loadingrate,time,scale,
andenvironmentalconditions.Theenvironmentalconditionssuchastemperaturemaychangebythetime
thefirstlayerof iceisformed;thenextlayerthusformsunderdifferentenvironmentalconditions.The
impuritiesinwatermayleadtoinclusionsin theice,alteringitsbehavior.Thequantificationoftheeffect
of all thesevariablesonthebehaviorof icerequiredanall-inclusivesimulationmodel.Onesuchmodel,
themultifactorinteractionmodel(MFIM),successfullyusedto simulatethecomplexnonlinearbehavior
of metalmatrixcomposites(ref.3),wasusedto simulatetheicebehavior.MFIM isof theform

p 11 m i
--= x A i (1)
Po i=l

(2)

where P is any property of the material (ice); n is the number of primitive variables; A is the primitive
variable (factor such as temperature); i is the index for the primitive variables; the superscript mi is the

material exponent which represents that property behavior path from the reference to the final value; and

the subscripts F and O refer to the final and reference values, respectively.

The multiplicative form of the MFIM model automatically accounts for the interactive effects of

the individual factors. Obviously, additional factors of a similar form can be added for new variables that

can change the material behavior. The MFIM is applied at the primitive (most basic or fundamental)

variables scale. Thus, the independent effect of each primitive variable is accounted for at the lowest
material scale. The effect on higher scale variables is assessed by using the physical behavior of the
material at its various scales. The behavior of ice does not conform to traditional mechanics theories: ice

is not purely elastic, viscous, or plastic (ref. 1). The MFIM enables the characterization of a completely

general material behavior via a single computational model. In the present report, we demonstrate the

temperature and time effects. Other effects such as impurity content can be demonstrated similarly.

COMPUTATIONAL SIMULATION PROCEDURE

The available computational methods were developed based on naturally exhibited physical

behavior of composite materials and/or structures. These methods are capable of simulating the ice



formationprocesslayerby layer.Thelayerscanbe(1)homogeneousasin thecaseof granulariceusually
formedatthesurfaceof lakesor(2)orthotropicor fully anisotropicasin thecaseof columnariceformed
atthelowerdepthsof lakes.Further,themultiyearicemayconsistof homogeneousandorthotropicice
layersin variousorientations.Thereareinsufficientdatato isolateallthefactorsaffectingthebehaviorof
multiyearice(ref.1).Analternateapproachiscomputationalsimulationthroughtheuseof MFIMand
integratedcompositemechanicsavailablein thecomputercodeICAN(IntegratedCompositeAnalyzer,
ref.4).

Theintegratedprocedurefor thecomputationalsimulationof theformationof iceandthebehavior
of itspropertiesisshownin figure2.Thesimulationbeginswithabodyof water(bottomleft of fig.2).
A finite-elementmodelisdevelopedforthebodyof water.A transientheattransferanalysis(topleftof
fig. 2) isconductedandresultsina layer-by-layericeformationwithtime.Theheattransferanalysis
providestemperatureprofilesthrougheachicelayeratall times.Themechanicalpropertiesof eachlayer
arethensimulatedusingamultifactorinteractionmodel(toprightof fig.2).Theglobalpropertiesof the
iceblockarepredictedusingICAN(bottomrightof fig. 2).

DESCRIPTIONOFCOMPUTATIONALSIMULATIONCODES

Asshownin figure2,twocomputercodesareused:(1)CSTEM(CoupledStructural/Thermal/
ElectroMagneticAnalysis/Tailoring,ref.5) tosimulatetheiceformationlayerby layerand(2)ICAN
(IntegratedCompositeAnalyzer,ref.4) to simulatethemechanicalandthermalpropertiesof iceatall its
scales(layersandtheiceblock).A briefdescriptionof thecapabilitiesof eachcodefollowstodemon-
stratetheirsuitabilitytocomputationallysimulatetheformationandthesubsequentbehavior.

IceFormation:CSTEM

Asillustratedin figure3,CSTEMisanintegrated,multidisciplinary,three-dimensional,finite-
elementcodewithsequentiallycoupled,single-discipline(heattransfer,structural,acoustic,electromag-
netic)codesincludingthoseforintegratedcompositemechanicsandoptimizationmethods.It
computationallysimulatesthecoupledresponseof layeredmultimaterialcompositestructuressubjected
tosimultaneousmultidisciplinaryloads.Thecompositematerialbehaviorandstructuralresponseare
determinedatits variousinherentscales:micro,ply (icelayer),laminate(iceblock),andcomponent
(multiyearice).CSTEMhasICANasamoduleto characterizethematerialbehavioratvariouscomposite
scales.Themechanicalandthermalpropertiesatthemicroscaleareconsideredtobenonlinearlydepen-
dentonvariousparameterssuchastimeandtemperature.

Forthepresentinvestigation,CSTEMwasusedfor thetransientheattransferanalysis.It wasalso
usedto simulatethelayer-by-layericepropertiesbycouplingit withthecompositeanalyzerICAN;
CSTEMcontainsaheattransferanalysiscapabilityfor steadystateandtransientanalyses.Thiscapability
allowsonetoobtaintemperaturedistributionsinastructureforeitherlinearornonlinearheattransfer
problems,includingconduction,convection,andradiation.Thenonlinearitiesin theproblemmayinclude
temperature-dependentproperties.ThethermalpropertiesarecomputedandupdatedusingtheICAN
module.Thetemperaturedistributionscan,in turn,beusedto generatethermalloadsin astressanalysis.
Themultitudeof capabilitiesinCSTEMmakeit usefulfor simulatingtheformationof iceundercon-
stantlychangingenvironmentalconditions,usinganonlineariterativeloop.

TheCSTEMcodeisversatilein that,if desired,astructuralanalysiscanbeperformedwithinit
simultaneouslywiththeiceformation.Thematerialpropertiesof icefor all typesof analysesinCSTEM
canbeinputatitslowerscales(inthiscase,layers)asit forms.Thecodeautomaticallycomputesthe
materialpropertiesrequiredforglobal/structuralthermalanalysesathighericescales(theiceblock)using
compositelaminatetheoriesembeddedin theICANmodule.



IceMaterialBehavior:ICAN

Basedoncompositemicromechanicsandlaminatetheories,ICANsimulatesthemechanicaland
thermalpropertiesatvariousscales(constituents,ply,andlaminate)of acompositestructure,starting
fromtheroomtemperaturepropertiesof theconstituents.Usinganiterativeapproach,theMFIM is
employedatitslowestmaterialscaletosimulatethedegradationin materialpropertiesdueto applied
temperature,time,andenvironmentaleffects,asshownontheleftsideof figure4.TheICANcodethus
makesit possibleto automaticallycomputethemultiscalecompositepropertiesof anycombinationof
multilayered,multimaterialcompositeconfigurationsaswellasofthedegradedconfigurationsatvarious
stagesof thecompositelife cycle.Theroomtemperaturepropertiesof thelowestscaleconstituentmateri-
alsareautomaticallyextractedfromtheICANresidentdatabankwhichcanbeaugmentedforproperties
of newmaterials.Thisfeatureresultsinaconsiderablesavingofthetimerequiredfor searchingand
inputtingthecompositematerialpropertydata.

Fororthotropicandanisotropicforms,ICANfurtherbreaksdownthelayersintoacomposite
fiber/matrixunitcell.Thisrepresentationallowsthesimulationof anisotropicicepropertiesatdifferent
orientations.In thepresentinvestigation,theICANcodeisdemonstratedfor homogeneouslayers.The
layers,however,havedifferentpropertiesbecauseof temperaturedifferences.

DEMONSTRATIONOFCOMPUTATIONALSIMULATION

Thedescriptionof acasedemonstratingtheformationof ice,thesimulationmodel,andtheresults
follows.

CaseDescription

Theschematicof anillustrativeiceformationprocessis shownin figure5.A bodyof water
initiallyatroomtemperature(70°F)isexposedto anenvironmentaltemperatureof 0°E Theboundary
conditionssimulateasemi-infinitebodyof waterin itshorizontalplane.At thetopsurface,heatisdissi-
patedbyfreeconvectionfromthewaterto thecooleratmosphere.Themagnitudeof thecoefficientof
convectionheattransferh isalsoshownin figure5.

SimulationModel

A finite-elementmodelconsistingof 125eight-nodedbrickelementswasdevelopedusing
CSTEM,asshownin figure6.Thethermalmaterialproperties,thermalconductivity,andcoefficientof
heatconvectionwereconsideredtemperaturedependent.A nonlineartransientheattransferanalysiswas
conductedonalayer-by-layerbasis.Asthetopsurfaceof thebodyof waterstartsto cool(belowthe
freezingtemperatureof 32°F),icebeginstoform.As water becomes ice, heat equivalent to the latent heat

is released to the surroundings. To simulate the heat release, a temperature-dependent specific heat was
used. The specific heat equivalent to the latent heat was used for the one-degree temperature difference

from 31 to 32 °F. At this temperature, the ice specific heat was used (ref. 6). Heat transfer also occurs :

within the body of water as a result of the free convection of water caused by the thermal gradient. To

simulate this effect, the equivalent thermal conductivity of water was calculated based on the free-
convection heat transfer film coefficient.



Results

Thetemperatureof thewateratvariousdepthsisshowninfigure7.Thereisarapiddecreasein
thetopsurfacetemperatureatthebeginning.Thetoplayerof waterbeginstochangeintoiceatabout
3 hr.Therateof thetemperaturedecreaseslowswithtime,almostreachingthesteadystateafter12hr.
Figure7alsoshowstime-dependenttemperaturesattwowaterdepths.Therateof thetemperaturede-
creaseis loweratgreaterdepths.Figure8showsthetemperaturecontoursthroughoutthebodyof water
after13hr.Icehasbeenformedfor temperaturecontoursatandbelow32°EThetimehistoryof thisice
formationis shownin figure9.Icehasformedinseverallayersatdifferenttimes.Afterabout12hr,the
increasein icethicknessbecomesnegligibleasthesteadystateisreached.Thetemperaturesthataffect
theicebehavioratagiventimeandwaterdepthareshownin figure7.

Testdataareavailableforthemodulusof elasticityandPoisson'sratio(ref.1),thermalconductiv-
ity andthethermalexpansioncoefficient(ref.7),andfor tensilestrength(ref.8).Themechanicaland
thermalpropertyexponentsinequation(1)werecalculatedusingdatafromasingletestat0 °EThevalue
of theexponentwascalibratedto be0.2for themodulusofelasticityandtensilestrengthand0for
Poisson'sratio.Theexponentfor density,thermalconductivity,andthermalexpansioncoefficientwas
determinedtobe0.05.TheMFIM wasthenusedtopredicttheentirerangeof mechanicalandthermal
propertiesof theice.

Asexpected,astheicetemperaturedecreased,itsmodulusof elasticity(fig. 10)andtensile
strength(fig. 11)increased.Poisson'sratio(fig.12)wasassumedto remainconstantwith temperature.
Thedensity(fig. 13)decreasedwithdecreasingtemperature;thatis,thecoldertheicegot,thelighterit
became.Thethermalconductivity(fig. 14)increasedslightlyastheicetemperaturedecreasedtoabout
25°Fandincreasedata lowerrateafterthat.Thethermalexpansioncoefficient(fig. 15)behavedopposite
tothethermalconductivity;therewasarelativelysmall-to-negligiblechangefor thethermalproperties
andfordensity.

Next,usinglaminatedcompositemechanics,selectedmechanicalandthermalpropertieswere
simulatedfortheentireiceblockasafunctionof time.Themodulusof elasticity(fig. 16),tensilestrength
(fig. 17)andthermalconductivity(fig. 18)of theentireiceblockincreasedwith timeasnewicelayers
wereaddedtotheiceblock.Thedensity(fig. 19)andthermalexpansioncoefficients(fig.20)of theice
blockmildlydecreasedwithtimeasit increasedin size.

Theimportantpointis thatthematerialbehaviorof theiceblockwasstronglydependentonthe
environmentaltemperatureandthelayer-by-layerformationof ice.Hence,it iscrucialthattheprevailing
environmentalinfluencesontheicebeincorporatedin theevaluationof itsbehavior.Twocomputercodes
describedandusedarecapableof simulatingall theseinfluencesontheice.Theresultsdemonstratedthe
effectivenessof thesecodesincapturingtheiceformationprocessandcharacterizingitsbehaviorin
prevailingtransientenvironments.

CONCLUSIONS

Thisreportdescribedthecomputationalmethodsusedto simulatethelayer-by-layerformationof
iceandto characterizeitsmaterialbehavior.A multifactorinteractionmodelwaspresentedfor assessing
thematerialbehaviorof iceformedunderprevailingenvironmentsoveraperiodof time.Themodelis
generalin thatit is applicableto alltypesof ice,isotropicoranisotropic,formedundervariousconditions.
Theenablingcomputercodesweredemonstratedfor asamplecase,whichillustratedtheprocedureand
theimportanceof a layer-by-layersimulationof theformationof iceanditsbehaviorundertheprevailing
environments.Theresultsshowedthatthemodulusof elasticityandtensilestrengthof icelayersandof



the entire ice block increase with time as the ice temperature decreases; also, the density of the ice layers

and of the entire ice block decrease. Using computer codes, results such as these can be generated in a

very short time. Collectively, the results demonstrated that the formation process and the properties of ice

can be computationally simulated--making it a cost-effective way.
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